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The weak Lagrange—Galerkin finite element method for the 2D shallow water
equations on the sphere is presented. This method offers stable and accurate solu-
tions because the equations are integrated along the characteristics. The equations
are written in 3D Cartesian conservation form and the domains are discretized us-
ing linear triangular elements. The use of linear triangular elements permits the
construction of accurate (by virtue of the second-order spatial and temporal accu-
racies of the scheme) and efficient (by virtue of the less stringent CFL condition of
Lagrangian methods) schemes on unstructured domains. Using linear triangles in 3D
Cartesian space allows for the explicit construction of area coordinate basis func-
tions thereby simplifying the calculation of the finite elementintegrals. The triangular
grids are constructed by a generalization of the icosahedral grids that have been typ-
ically used in recent papers. An efficient searching strategy for the departure points
is also presented for these generalized icosahedral grids which involves very few
floating point operations. In addition a high-order scheme for computing the charac-
teristic curves in 3D Cartesian space is presented: a general family of Runge—Kutta
schemes. Results for six test cases are reported in order to confirm the accuracy of the
scheme.

Key Wordsfinite element method; icosahedral grid; Lagrange—Galerkin; Runge—
Kutta; shallow water equations; spherical geometry; unstructured grid.

1. INTRODUCTION

Due to the recent paradigm shift in large-scale computing from vector machines (ha
few but powerful processors) to distributed memory machines (having a multitude of |
powerful processors) researchers have begun to explore methods other than the sp
method for solving the shallow water equations on the sphere. Besides not parallelizing \
the spectral method also suffers from the restriction that the grid be a longitude—latit
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grid which packs too many unnecessary points at the poles. By exploring other class
methods, researchers are also free to choose other types of grids. For example, in [11]
gnomonic grids are used in conjunction with the spectral element method. In [6] icosahe
grids are employed with a finite differencing spatial discretization. In [1] a spiral triangu
grid similar to the icosahedral grid is used with the weak Lagrange—Galerkin meth
(For a complete review of grids for tiling the sphere see [10].) However, many of these r
approaches continue to follow in the footsteps of the spectral method by writing the equat
in spherical coordinates; the only exception is the finite difference method presented in
which solves the equations in a coordinate invariant form.

Although spherical coordinates seemto be the natural choice, they present many prok
and associated computational costs. As we have mentioned previously, spectral me
on the sphere require the use of latitude—longitude Gaussian grids, which introduce:
many redundant points around the poles; this situation is exacerbated as the resol
is increased. In addition, spherical coordinates result in singularities at the poles fo
discretization methods except the spectral method (which uses Gaussian quadrature
that do not contain the poles as quadrature points). The problem of singularities at the |
caused by spherical coordinates can be circumvented by applying rotation transforma
(asis done in [11] from spherical to gnomonic space) or by using Cartesian coordinate
which case the equations no longer contain singularities at the poles without the nee
introduce any type of rotation transformation.

In[2, 3, 9]the equations are solved in Cartesian rather than spherical coordinates. In[2
Lagrange multiplier approach for transforming the shallow water equations from spher
to Cartesian coordinates is introduced. This idea is then used to construct a semi-Lagra
shallow water model but on longitude—latitude grids, an unnecessary remnant of spe
methods. In [9] the Taylor—Galerkin method in 3D Cartesian space using icosahedral ¢
is presented. This work is the closest to that of our previous work presented in [3] in that
approach uses neither spherical coordinates to write the governing equations nor sp
methods to solve them. However, in [9], the work stops short of that in [3] by then mapp
the 3D linear triangles to a local 2D space, an unnecessary step since all the compute
can be carried out in 3D space thereby avoiding any type of mapping to a local space. |
we developed a weak Lagrange—Galerkin method in 3D Cartesian space using trian
linear basis functions on icosahedral grids. In this work, all of the computations take pl
in 3D Cartesian space, thus avoiding any local mappings or rotation transformations.

Using Cartesian coordinates avoids another obstacle encountered with spherical cc
nates, that is, that explicit basis functions cannot be obtained in this space. By usinc
Cartesian coordinates, explicit basis functions can be constructed, which means that
functions (which are the natural or area coordinates) can be used for obtaining all of
finite element integrals in closed form and interpolating the values of the departure pc
required by all Lagrangian schemes. This is the approach taken in our current paper.

The Lagrange—Galerkin method has been shown to be very attractive for solving hy
bolic equations on the sphere [1, 3]. This method combinestdod of characteristics
with the finite element method. Because this method represents an integration of the e
tions along the direction in which information is propagating, namely the characterist
the method is not only very accurate but also quite stable even for very large Cou
numbers. The current paper is an extension of the ideas presented in [3] but for the
nonlinear shallow water equations. The Lagrange—Galerkin method is implemented
new class of grids which contains the typical icosahedral grids. These new grids offer v
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more flexibility in the construction of grids over the typical icosahedral grids. In additio
a searching strategy for locating departure points is introduced for these new grids.
searching strategy is much faster than the icosahedral quadtree-like data structure origi
introduced in [3]. Finally, the high-order general family of Runge—Kutta schemes for co
puting the departure points on the plane introduced in [5] is extended to the sphere.
method is more accurate than the midpoint rule typically used in Lagrangian schemes
[5] for a comparison of this method with the composite midpoint rule).

2. SHALLOW WATER EQUATIONS

The 2D spherical shallow water equations in conservation form are

) pu pv ow
at | gv ax ouv Iy |pv?+ 32| 0z pvw
pw puUw pvw pw® + %‘Pz
0

f(2pv — Ypw) + ux
f(Xpw — Zpu) + pny
f(Lou— 2puv) + puz

but note that if we move the pressure tenré$2) to the right-hand side, we get

7 pu pv pw
0 u a 2 d | puv 0 | puw
ot | pv aX @uv By ¢v2 0z | pYvw
pw Quw pow pw?
0
—92 + f(Zpv — Ypw) + ux
: 1)
—p4 + f(Sow — Zou) + ny
—¢3 + £ (Lou — Xpv) + puz
This system can now be written more compactly as
I
s + V- (pu) = S(p) 2)
where
¢ u
pu
e=1 1 u=|v |, S(¢) = Fp+ Fr + Fc, (3)
¢ w
Qw

Fp=—¢Vo, Fr=—f(r x pu), Fc = ur,
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and

whereQ anda are the rotation of the earth and its radius, respectively. In other wiggds,
is the force due to pressurég is the force due to the rotation of the earth (Coriolfsg,
is the force required to constrain the fluid particles to remain on the surface of the spt
andy is the Lagrange multiplier used to satisfy this condition. This term is best obtainec
discrete form. Ifitis obtained from the continuous equations, then for the discrete equat
the particles may no longer be guaranteed to remain on the surface of the sphere.
The equations are solved for the four conservation varighlesl, pv, andpw. Clearly,
we could also include other forcing functions and in this case they would be included wit
S(). Before proceeding to the discretization of the weak Lagrange—Galerkin method
us first look at the discretization obtained by an Eulerian method. This will serve both
contrast and also because we require one Eulerian time step as the weak Lagrange—G:
method requires two known time levets=£ 0 andt = At) prior to its usage.

3. EULER-GALERKIN METHOD

Beginning with (2) we can define an Eulerian finite element method by taking the we
form

/WB—,[JrV (pu) — S(p)| dQ =0,

whereys denotes the basis functions. Integrating by parts (Green’s theorem) such as
V- (pu) =¥V - (pu) + (pu) - Vi
yields
/w c‘adQ+/F‘n-U1//tde—/QVlﬁ%(pU)dQ—/QI//S((p)dQ:O.
In the case of flow on a sphere, the second integral vanishes because the basis functio

chosen to be continuous across element interfaces and there are no physical boundatr
other words,

/ n-uyedl =0,
r
and we are left with
d¢p
/ Y—dQ = /Vw - (pu) d§2+/ ¥ S(p) dS2.
Q Q

The resulting system of ordinary differential equations can now be written as

dp

ol = H(p),
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which after integrating in time by a general family of Runge—Kutta schemes yields
@ ="+ AtBH (@)

where

g = M_;Hl k=1,....,M, and H(e)?=H("
This scheme is required for the first time step because, as we will see, the weak Lagra
Galerkin method, although a two-time level scheme, requires two previously known ti
levels in order to calculate the particle trajectories.

The Lagrange multiplier used in the Eulerian and Lagrangian schemes presented ir
paper is obtained by the following method: leti* be the solution of the momentum
equations by either the Runge—Kutta or Lagrange—Galerkin scheme. Since we require
the velocity field and the outward pointing normal to the sphere be orthogonal,

pu-r=0.
Therefore, the constrained momentum equations satisfy the relation
QU = u* + ur
and taking the scalar product o¥/ields the Lagrange multiplier

Qu* -1
-

’

wherea is the radius of the earth. This procedure is applied at the end of each time ste
order to ensure that the velocity field remains orthogonal to the radial vector thereby c
straining the fluid particles to remain on the surface of the sphere throughout the integra
It is uncleara priori what effects this procedure has on the formal order of accuracy of t
scheme. A stability analysis of the equations with this term is in order; this is the topic ¢
future research note.

4. WEAK LAGRANGE-GALERKIN METHOD

4.1. Spatial Discretization

The weak form of2) is

/w[a—"ow-(sou)—suo) dQ=0
o | ot

and integrating by parts as such

0 0 d
SR =v Lot and V(e = YV - (W) + () VY



LAGRANGE-GALERKIN SHALLOW WATER MODEL 341

we get

0 0
/Q [5«/«0) Ly (wgou)} L, [S—‘f +u. vw] _[ySplde=0. (@)

The first bracketed term @#), using Reynold’s transport theorem, can be written as

d 0
a/ﬂ(xﬁso)dsz =/Q {ﬁwf«p) 4V (Wu)} de, 5)

and the second bracketed term is actually the characteristic equation

dy _ 3y _
H=E+U-V}[/—O, (6)

where

dx(t)
— = ux(),t 7
T: (x(t), t) (7)
is used to predict the particle trajectories along the characteristics where the basis func

vanish. Substituting5) and(6) into (4) yields the system

d
a/(wwdsz:/wsao)dsz. (®)
Q Q

The advection operator has disappeared from the equations; however, the correct pe
trajectories are accounted for by the trajectory equation (7). In addition, consider that
divergence of the velocity has also disappeared or rather has been absorbed by the Rey
transport theorem (see [5] for further details).

4.2. Time Discretization

Integrating(8) in time by thed algorithm yields

/ (W) dQ™ = / (Vo) dQ"
Qn+1 Qn

+ At {9 S d™ +(1-6) | ¥S(p) dﬂn} . 9
QH

Qn+t
which represents a two-time-level scheme and gives the explicit rectangle rule, the trape
rule, and the implicit rectangle rule fér=0, % 1, respectively. In this papér= % is used
throughout because it yields a second-order-accurate scheme and is unconditionally ¢
with respect to the advection operator. The other two schemes are both firsttordeis
not very stable whil® =1 is quite diffusive. Clearly, Eqg7) and(9) define a two-time-
level scheme requiring the variables at timesdn + 1. However, in the following section
it is shown that in order to solve E(¢) accurately requires the velocity field to be knowr
at previous time levels. The accurate solution of the trajectory equation is perhaps the
important part of Lagrangian methods. In the next sections we extend our new metho
calculating the particle trajectories described in [5] to the sphere.
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4.2.1. Midpoint rule. In most Lagrangian methods particle trajectories are comput:
by the midpoint rule

which requires the following extrapolation of the velocity field,
u(tn+1/2) — gu(tn) _ %U(tn_l), (10)

where the termu(t") refers to the velocity values at timeat each grid point whereas
u(x(t"), t" refers to the velocity values at tintebut along the characteristics. Since we
need to know(t"+1/2), we have to assume that the trajectory frofi+1) — x(t") is linear,

in other words,

X (™) 4+ x(t™)

X tn+1/2 — ,
(t7272) .
which then yields the iterative equation
n+1/2 n+1 At n+1/2 n+1/2
X(t"2) = xt )—7u(x(t ), M), (11)

We solve for the midpoint by starting at the arrival pout™+1) as the first approximation
to x(t"+1/2), Continuing in this iterative fashion results in convergence in less than fi
iterations.

This scheme is second order accurate in space and time and is used quite extensiv
the semi-Lagrangian community. On the sphere, the midpoint rule has to be modified ¢
that the new departure points computedb) remain on the surface of the sphere. In othe
words, after each iteration we must apply the projection

a
Xd = 7o Xd,
[Xd]
wherea is the radius of the sphere.

However, the weakness of this scheme is that upon obtaining the correct midpoint tre
tories, the departure points are then computed assuming a linear variation in the traject
as shown in11).

4.2.2. Runge—Kutta scheméA higher-order approximation can be obtained by apply
ing the Runge—Kutta scheme to the trajectory equation (7) yielding
X(t*) = x(t™) — AtBux (), t ), (12)

where

1

tn+1 fork =1
p=—"— k=1,..., M, and t"lz{

T M-—k+1 tt1-8 fork> 1"

This requires knowingi(x(t"+1-#), t"+1-#) which can be extrapolated from the velocity



LAGRANGE-GALERKIN SHALLOW WATER MODEL 343

field at the previous time levels. We could use the extrapolation givekOjrbut this would
formally give only second-order approximations for the velocity. Therefore, the most c
sistent approach is to use an extrapolation of order equal to that of the Runge—Kutta sct
At the first Lagrange—Galerkin stép= 2At) we already know the velocity at timés= At
andt =0 (because the first time step is carried out with the Eulerian method). Therefor
this time step we can only use a maximum of a second-order scheme. Therefore we
second-order extrapolation as well as a second-order Runge—Kutta sdiiem®). How-
ever, at the next time stgp= 3At) we now know the velocity fields at=2At, At and O,
thereby allowing us to use a third-order scheme. Finally, at the third Lagrange—Gale
step (=4At) we know the velocity field at sufficient time levels to allow us to use
fourth-order scheme. The extrapolations of the velocity field at tirkel — g then can be
obtained from the Taylor series expansions, giving

ut"™ ) = 1+ a+b+oud™ +au™h + but"?) + cu"3),

where
a=3s b=0 c=0 forM =2
a=25+452 b=—38— 36 c=0 forM =3

a=35+3282+38° b=-36-202-16% c=15+262+18° forM=4
and
§=1-8.

However, it should be understood that getting fro@") to u(x(t™), t") requires an inter-
polation in space becaugé") generally will not fall on a grid point. This is where having
explicit basis functions is an advantage because we now have an inherent mechanis
interpolating the velocity field at any poimi(t"). In this algorithm, the interpolation is
achieved by using the linear finite element basis functions using the values at the ver
of the triangular element containing this point.

This scheme does not require a first guess starting point as in the previous scheme be
this is not an iterative scheme but rather is a multi-step scheme. Therefore we begin
the arrival point, as in the previous scheme, and step through toward the departure
In addition, upon computing the next value fr@d®?) we have to enforce the new point to
remain on the sphere. The simple projection
k XK

X' =a——
XK

enforces this constraint. The advantage of this scheme over the midpoint rule is tha
Runge—Kutta scheme never assumes a linear trajectory [5]. Because of its higher-
approximation the Runge—Kutta scheme is better equipped to compute more accurat
jectories than the midpoint rule. A comparison between the composite midpoint rule
the Runge—Kutta scheme is given in [5].
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4.3. Element Equations

Returning to(9) and substituting the conservation variables fri@ngives

n+1
¢
pu n+1
(o[9)
[zm& w @v
pw
+1
% " 0 n
9
/ v wu aQ" At@/ v o f(g(pv_ %(pw) don+t
= + ‘
o | v it —(pg—i + f (Xpw — Zpu)
ow
—05% + T (Gou - Zev)
O n
—o5% + T (Gov — fow)
+AtL-0) | ¥ de", (13)

—p% + f(Jou—3ov)
which are the equations to be solved within each element. The mass (geopotential)

momentum equations can be decoupled as follows: the mass equation is no longer a fur
of velocity except through the trajectory equation (7),

V(g)damt = /Q e,

Qn+1

while theu-momentum,

Qn+l

¥ (pu) dQ™1 — Ate/ v [f (Zgov — yww)] dontt
Qn+l a a

= [ wewiar+ata-o [ l/f{—fpaw-l-f(zgov—y(pw)]dsz”
Qn Qn a a

aX
dp n+1
+ At VU —p— ) dQ"?,
Qn+l BX

v-momentum,

¥ (pv) dQM — AtG/ w{f (X(pw - Zgou)} dqntt
Qn+1 a a

Qn+1
_ n _ _,0% Xow—2 n
= /Qn Y (pv)dQ" + At(1—60) /Qn Iﬂ|: (pay + f agow a(pu (0[9]

e
Ato —p— ) dQ"t,
+ /Qn+1 w ( ¢ ay)
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andw-momentum,
¥ (pw) dQM! — At@/ WY {f (qu - i(pvﬂ dott
Qn+1 a a

/ Y (pw)dQ" + At(1—0) / { (pﬁ + f <y<pu - 2<pv>} de"

a
+ At6 / v a dQm,
Qn+1 82

are all coupled through the Coriolis terms.

Qn+1

4.4. Global Equations

Approximating the conservation variables within each elenehy the expansion
3
©= Vg (14)
j=1

and adding all of the contributions from the elements to each of the global grid points res
in the following linear system of global equations

A <P?+l =bf (15)
and
1
A; -Dij G (pu); " bt'
Di.j Ai,j —Bi,j ((pv)j = blv I,j =1,...,Np, (16)
—-Cij Bij A (pw);j b

whereN, denotes the number of grid points in the grid. The elements of the above bl
matrix are

A =/ yiy; det
Qn+l

o | X

BLj = At0 / w;wm( )fkdsz““

Cij = Ato / w.w,ww.( )fkdsz““

Dij = Ate/ iy v <ZI) fdentt
Qn+1 a

andb’, b, b¥, b* are the right-hand side vectors for the mass and momentum equatic

[ B |

respectively, and are defined as

bl = | v(p)dQ"

Qn

/w(wu)dQ”+At(l 9)/ [ (p—w—i—f(g(pv—ggow)}dQn

9
+At9/ w< gaq’) don+t
Qn+1 ax
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0
b’ = Y(pv) dQ" + At(1—6) Iﬂ|:—(,0¢+ f(xfpw—zgou)] de"
Qn Qn a a

ay
dg 1
+At9/ 1//(—g0—> dont
Qn+l 3y
dp

b = V(pw)dQ" + At(1—0) w{—fp—l- f(ytpu—xgavﬂ de"
Qn Qﬂ a a

0z
e n+1
+ At v —p— ) dQ"t.
Qn+l 82

The right-hand side values are obtained by integratin@drwhich represents the element
at the departure points along the characteristics. In this paper, the integrals are obts
using a quintic quadrature rule (see [5] for further details).

Consider that the matrices, B, C, and D are all symmetric positive definite but the
global system is not. In fact, the global system is skewed symmetric and for this ty
of system there is no one best solver. The global matrix is sparse, however, and iter:
methods may be the best methods of solution. The good news is that although we begar
a system of nonlinear equations, discretizing the equations by the weak Lagrange—Gal
method results in a system of linear equations.

Because the system is not symmetric positive definite we cannot utilize many of the |
known solvers such as the conjugate gradient method. There are, however, variants of
methods that can be used such as the biconjugate gradient method. Because the sys
quite sparse, direct methods may be inefficient. For the moment, we are employing a d
LU decomposition method for simplicity, but we are also exploring ad hoc direct solve
for this type of a skewed-symmetric matrix and multi-grid methods.

Another possibility for solving the momentum equations more efficiently is to simpli
the equations in order to make them symmetric positive definite. This approach is introdt
in [1] and the strategy is to extrapolate the velocity field (using the valueasmdn — 1) to
get an approximation at+ 1. This now allows moving th®, C, andD matrices in(16)
to the right-hand side. Each conservation variable can now be solved explicitly; in ot
words, all four equations are now completely decoupled. However, doing this restricts
size of the time step that can be used but the advantages are that only one left-hanc
matrix needs to be stored and inverted. This matrix is the mass matrix which is symme
positive definite and can be inverted quite easily using straightforward conjugate grad
methods.

5. ICOSAHEDRAL GRIDS

One of the difficulties of using icosahedral grids is that we are restricted to only a f
possible grids because the number of grid points increases by a factor of 4 with ¢
refinement of the grid. In other words, from the fourth=4) to fifth (n =5) refinement
we go from 2562 to 10,242 grid points (see [3, 6]). This is a very limiting constraint whi
trying to do, say, a grid convergence study on a workstation. A way around this dilemm
to construct the following general icosahedral grid.

We begin with the initial icosahedron having 12 points and 20 equilateral triangu
elements. Thenwe subdivide each triangle of the initial icosahedropthyarder Lagrange
polynomial. Before doing so, however, it is best to map this triangle onto a gnomonic sp:
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The most unbiased mapping is obtained by mapping about the centroid of the icosah
triangle. (Because all of the initial triangles are equilateral, the centroid also happens t
the circumcenter of the triangle.) Lét., 6;) be the centroid of the triangle we wish to map.
Then, the gnomonic mapping is given by

= acosd sin(h — Ac)
~ sind, sind 4 cosh; cost cogA — A¢)’

B a[cosh. sinf — sind. cost coA — A¢)]
"~ Siné. sind + cosb; cosH coA — Ac)

17)

)

which is rather complicated. However, if we first apply a rotation mapping whereby in 1
new coordinate system the coordinatgst) are located at0, 0), then(17) becomes

X = atan)’, y = atanf’ secd’, (18)

where the rotation mapping is

, cosf sin(A — A¢)
A" = arctan — - ;
SiNd. Sinf + cosH; cosH COIA — A¢)

(19)
0’ = arcsirjcost, sinf — sind, coss cogA — Ao)].

This approach results in the construction of a general icosahedral grid with the proper

Np = 10(p — )% +20(p — 1) + 12
NS == 3(Np - 2),

whereNp, Ne, andNsdenote the number of points, triangular elements, and sides compris
the grid, andp is the order of the Lagrange polynomial used to subdivide the 20 initi
triangles of the icosahedron. If we substituyie- 2" then we recover the results for the
icosahedral grids used in [3, 6, 9]. The results of the new icosahedralgrahd the old
icosahedral gridr() are shown in Table I. For up to 10,242 grid points there are only
possible old icosahedral grid configurations whereas there are 32 possible new icosal
grids.

5.1. Searching Algorithms

The crux of any Lagrangian scheme is the accurate calculation of the particle trajecto
in otherwords, the correct solution ofthe trajectory equation (7). Once the correct trajectc
are computed, it then remains to interpolate the conservation variables at the depz
points. In [3] a quadtree-type data structure was introduced which took advantage of
subdivision of each triangle into four smaller triangles, as is done in the typical icosahe
grids. However, because we no longer have this quadtree structure, we must devis
alternate searching strategy. The general icosahedral grid, in fact, makes it much eas
search for the departure points.

We begin by constructing an integer pointer array intimeg [1 : 20 1 : p?], which stores
the triangular element identification numbers contained within each of the first initial
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TABLE |
The Number of Grid Points, Elements, and Sides for the Icosahedral Grid

P n N Ne Ns

1 0 12 20 30

2 1 42 80 120

4 2 162 320 480

8 3 642 1280 1920
10 — 1002 2000 3000
15 — 2252 4500 6750
16 4 2562 5120 7680
20 — 4002 8002 12000
30 — 9002 18000 27000
32 5 10242 20480 30720
40 — 16002 32000 48000
64 6 40962 81920 122880

Note.The generalized (new) icosahedral grid is givenpognd the typical (old) icosa-
hedral grid is given by the different refinement values

triangles of the icosahedron. For a given departure point, we search through the ir
triangles of the icosahedron and use the inclusion tests described in [3]. Once we hav
i th initial triangle which contains the point, we can then simplify the search to that of
ordered listbecause, after all, thetriangles (children) contained within each initial triangle
(parent) are equally spaced within their parent element. Therefore, by first mapping
departure point in Cartesian coordinatgs, Yy, Zg) to the corresponding local coordinates
(&4, ng) Of the parent, we can then compute the indices of the child that contains this depat
point. (Figure 1 shows a parent triangle fo= 3.) In [3] the conditions for testing for an

inclusion are described. In that paper the area coordinates are used for this test. Ther

JAVAVAN

FIG.1. Aschematic of one of theinitial 20 triangles of the icosahedropfer3 which yieldsp? subtriangles.
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since the area coordinates for the departure point are defined by

Y1(Xd, Yd, Zo) =1 — &g —nqg
Y2(Xd, Yd, Zd) = &4 (20)
Y¥3(Xd, Yd> Zd) = nd;

we automatically have the mapping from Cartesian to local space. The indices of the
which contains this point are then given by the relations

ig = 1+int(p&y), ja = 14 int(png),

where int is the integer function. However, the local coordinateg afside the triangular
element defined byiq, jq) are not equal t@¢y, ng) and so we must map this local coordi-
nate from the parent element to its chiid, j4). This can be accomplished by using the
transformations

&= p& — (ig— D), nd=Ppna—(ja— D,

which essentially scales the local coordinates frogil]JGo [0, p]. This transformation
yields the local coordinates of the departure point in the sqdargq), as is shown in
Fig. 2; however, there are two triangles on this square and we need to determine whict
of these two triangles contains the point. In order to determine which triangle contains
departure point, we simply test the value of the function along the hypotenuse

if 1—&—ng>0 then lower triangle

if 1—&—n4<0O then upper triangle

and rewrite the basis functions according to the result of this test. For example, if the lo
triangle (left) contains the point, then the basis functions are give2®y whereas if the

id jd

0 1

FIG. 2. A schematic of the initial triangle of the icosahedron in local coordinate space.
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upper triangle (right) contains the point, then the basis functions are given by

Y1(Xd, Yd, Zg) = &g +na— 1
V2(Xd, Yo, Za) = 1 — &g (21)
Y¥3(Xd, Yd, Zd) = 1 — na,

which amounts to making the change of coordinatgs 1 — &4 and ng=1—nq. This
searching strategy requires only one set of inclusion tests to determine whether a t
gle contains the departure point. After the initial triangle (parent) is found, the rest
the searching strategy simplifies to searching an ordered table using a few floating
operations.

6. RESULTS

For the numerical experiments, the following terms are used in order to judge the per
mance of the scheme: the error norms for the mass and momentum,

_ fQ((Pexact_ (P)Z dQ

B fQ Ql)(gxactdQ

_ fQ(Uexact_ U)2 + (Vexact— U)Z + (Wexact— w)2 de
B f Q ngact"‘ ngact"‘ ngactdQ

M

U

3

the trajectory norm,

Joo (xa = x§)* d@2
Jo(Xa— xgxacf)z de’

T =

where a and d denote the arrival and departure points, and the two additional conserv
measures

My — JopdS2
fQ Pexactd 2

and

B Jo (W% + 07 4+ w?) + ¢?dQ
f Q (Pexact(ngact+ ngact+ w(gxact) + QDgxactdQ.

M2

TheL, error normsM andU compare the root mean square percent errors of the numeri
and exact solutiond, measures the accuracy of the trajectoris,measures the conser-
vation property of the mass, aib measures the conservation of the total available enerc
The ideal scheme should yield error and trajectory norms of zero, and mass and ener
measures of one.

Six test cases are used in order to test the algorithm. Test cases 1, 3, 4, and 5 corre:
to test cases 1, 2, 3, and 6 given in [12]. Test case 2 is similar to case 1 but for a ti
dependent velocity field and is given in [1], whereas test case 6 is given in [7]. Test cas
and 2 involve the mass equation only whereas the remainder of the test cases conce
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full shallow water equations. In addition, cases 1-4 have analytic solutions and are us
determine the accuracy of the Lagrange—Galerkin method quantitatively. Test cases ¢
6, on the other hand, do not have analytic solutions and are thus only used to determin
accuracy of the scheme qualitatively. All the cases were run using a time step twice as |
as that allowed by the second-order Runge—Kutta Eulerian finite element scheme.

6.1. Case 1: Steady-State Advection

This test case concerns the solid body rotation of a cosine wave. It only tests the r
(geopotential) equation as the velocity field remains unchanged throughout the compute
Results are reported after one full revolution, which corresponds to an integration of 12 d

By using the mapping from spherical to Cartesian space

X = acosf CoSA
y = acosd sini (22)
z =asing,

A= arctar<X>
X
([ Z

0 = arc5|r<—>
a

we can write the initial conditions in terms of Cartesian coordinates. The spherical coo
nates(i, 6) correspond to the longitude and latitude. This results in the following veloci
field in Cartesian space

where

(23)

U = —UsSIiNA — vsSIiNd cosA
v = +UsCOSA — vsSing sinA
w = +v5C0SH,

whereus andvs are the zonal and meridional velocity components in spherical coordinat
A convergence study is shown in Fig. 3 for various grids. This figure shows that refin
the grid by a factor of two increases the accuracy by a factor of four. In other words,
figure is showing that the method is second-order accurate. Figure 4 shows tioem
of the mass with respect to time for the grips=8, 16, and 32. This figure shows that the
second-order accuracy is maintained throughout the 12-day integration. Figure 5 show
effects of the time step on the solution accuracy for the grid16. The trajectory error
increases with an increase in time step, but the mass error decreases, reaches a p
and then increases. This plot shows that for a given problem, there is an optimal 1
step. The reason we do not see a decrease in the mass error with decreasing time
that although the trajectories become more accurate, more time steps also require
interpolations. Because interpolations are used to obtain the conservation variables ¢
quadrature points, we then expect a decrease in accuracy as the number of interpol:
increase. This behavior will remain regardless of the order of the interpolations. In ot
words, going to a higher-order interpolation will not make this source of error disappes
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0.01

12 16 20 24 28 32
p

FIG. 3. Case 1. Convergence study of the mass error.

6.2. Case 2: Time-Dependent Advection
This test case is similar to case 1 except that the velocity field is now a function of ti
and is given in [1] as

. . t
U = (—UsSINA — v5SiNd COSA) (1 + cosg)

1
p=08 —
p=16 -
p=32 ----

0.1

e ettt

]

Z

o

-

0014 T
0.001 y ' J T T T T T T T T
24 48 72 96 120 144 168 192 216 240 264 288

time (hours)

FIG. 4. Case 1. Time history study of the mass error for three different grids.
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0.1

0.014

L2 Norm

0.0014

0.0001 T
0 2 4 6 8 10 12 14 16

time step (hours)

FIG.5. Case 1. Time-step study of the mass (M) and trajectory (T) errors for theg#itl6.

. . t
v = (+UgCOSA — vgSING sin)) (l + coséo)

tw
w= (+vscose)<1+ cosa> ,
where the time is normalized such that it is in the range
t € [0, 1]

andw is the angular velocity as given in [12] as

2ra
w = s
12 days

wherea is the radius of the earth. At the beginning and end of the revolution, the veloc
is twice the steady-state value (case 1) and zero at a half revolution. This test case is
for determining the accuracy of the trajectory calculations (Eq. (7)) and to determine
sensitivity of the time step on a time-dependent velocity field.

The exact solution of this test case (as well as case 1) is given by

PexaclX, T + At) = (X — Atu, 1).
By applying a rotation transformation, we get the arrival points in the rotated space

A, = arctaficosfa Sin(la — Aq), COSPa COYAg — A4)COSH, + SiNG, SING,]

0} = arcsirjsing,; cosd, — C0SH,COLAa — Aq)SING,] ,
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which now only consists of motion about the equator. The departure points in the rote
space are

Atw . t+ AHw tw
- <+ Sin — SIin—

Ay = AL

a
/ ’
9d == 93,

wherei, =0 andf, = «. The parametet represents the axis of rotation with respect tc
the equator. In other words,= 0 corresponds to rotation about the equator whexea90
corresponds to a rotation about the poles. (The value0 was used for all of the test
cases, as there was no noticeable difference between various vah)ebsing the inverse
transformation, we get

Ad = Aq + arctan[co®; siniy, oSO, COSAy COSH, — SN Sinb,]
(24)
64 = arcsin[co®); cosiy Sind, + Sind; cosb,],

which are the departure points in the original (unrotated) spherical space. The depa
points in Cartesian space can now be obtained using the mapping (22).

A convergence study is shown in Fig. 6 for various grids. The results presented for
test case also show that the scheme is yielding second order accuracy. Figure 7 shov
L, norm of the mass with respect to time for the grjits 8, 16, and 32. The results for this
test case are similar to those of case 1. This test case tells us that the particle trajectorit
being computed accurately regardless of the time-dependent velocity field. Figure 8 st
the effects of the time step on the solution accuracy for the gedl6. In order to get
accuracies of the same order of accuracy as those obtained for case 1, we had to rur
steps half the size of those used in case 1. This is because at the beginning and at th
of the 12 day integration, the velocity field for this case is twice as large as the steady-s

0.1

L2 Norm

0.01 T T T T T

4 8 12 16 20 24 28 32
p

FIG. 6. Case 2. Convergence study of the mass error.
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FIG. 7. Case 2. Time history study of the mass error for three different grids.

case. Otherwise, the results between cases 1 and 2 are identical. Having confidence
precision of our particle trajectories, we next turn to the full shallow water equations.

6.3. Case 3: Global Steady-State Nonlinear Zonal Geostrophic Flow

This case is a steady-state solution to the nonlinear shallow water equations. The equz
are geostrophically balanced and remain so for the duration of the 5-day integration.
velocity field remains constant throughout the computation, while the geopotential he

1

0.14

L2 Norm

0.01 T T T T
0 1 2 3 4 5
time step (hours)

o
~
@

FIG. 8. Case 2. Time-step study of the mass (M) and trajectory (T) errors for thepg#idl6.
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U ----

0.014 ™

L2 Norm

0.0014

0.0001 T T T T T T
4 8 12 16 20 24 28 32
P

FIG.9. Case 3. Convergence study of the mass (M) and momentum (U) errors.

undergoes a solid body rotation. The velocity field is the same field used in case 1, an
geopotential is given as a constant band. Since the initial geopotential height rotates &
its axis of isotropy, the solution of the geopotential height looks the same throughout
time integration. In this sense, it is a steady-state solution to the shallow water equatio
A convergence study for the mass and momentum errors is shown in Fig. 9 for \
ious grids. The errors for the mass and momentum converge at the same rate an
approximately of the same order of magnitude. Figure 10 showk tm®rm of the mass

0.01
p=08 —
p=16 ----
p=32 -----
0.001 1
E
3
2
o
- -
0.0001+
1e-05 T T T T
24 48 72 96 120
time (hours)

FIG. 10. Case 3. Time history study of the mass error for three different grids.
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FIG. 11. Case 4. Convergence study of the mass (M) and momentum (U) errors.

with respect to time for the gridg =8, 16, and 32. The solution is clearly converging for
increased resolution but the rate appears to be closer to first rather than second order

6.4. Case 4: Steady-State Nonlinear Zonal Geostrophic Flow with Compact Support

This case is similar to case 3 except that the velocity is zero everywhere except
very small isolated region. This isolated region, or jet, encapsulates the flow and rest
the geopotential height field to remain within a very confined region. The results repol
below are for a 5-day integration.

Figure 11 shows that the mass and momentum converge at roughly the same rat
the mass is more accurate than the momentum by an order of magnitude. Figure 12 s
the L, norm of the mass with respect to time for the grjpls- 8, 16, and 32. Thé., norm
remains constant throughout the 5-day integration. This case also appears to be conve
at a first-order rate both for the mass and momentum.

6.5. Case 5: Rosshy—Haurwitz Wave

Although these waves are not analytic solutions to the shallow water equations, they |
become a de facto test case. In a nondivergent barotropic model, the initial geopote
height field (mass) undergoes a solid body rotation in a counterclockwise direction (w
viewed from the north pole). The angular velocity is given by

_ RB+Rw-22
T 1+RE2+R

whereR =4 is the wave number. Because this solution does not have an analytic solu
we have used the fourth-order Runge—Kautta finite element solution presented in Secti
with the grid p =40 as the reference solution.
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FIG. 12. Case 4. Time history study of the mass error for three different grids.

The final contours for the geopotential height (mass) and velocity field (momentum)
the grid p=20 after a 7-day integration are shown in Fig. 13. These contours are drs
from the view point(x, 8) = (0, 0). In these figures, the velocity components illustrate
are actually the spherical velocity compone(uis vs). These values are obtained by the
inverse mapping of (23).

Figures 14 and 15 show the, norms of the mass and momentum with respect to tim
for the gridsp =10, 15, and 20. The errors increase with time at a constant rate; howe\
the mass and momentum convergence to second order. This is particularly noticeab
comparing the gridp = 10 andp = 20 at the end of the 7-day integration.

6.6. Case 6: Dancing Hi-Lo Waves

This test case comes from [7] and, like case 5, is not an analytic solution to the s
low water equations. The initial geopotential height (mass) consists of two large wa
with the low wave situated on the left and the high wave on the right, when viewed fr
(A, 0) = (0, 90). The waves rotate clockwise in a dance-like fashion, at which point at
days of integration, the high wave is now on the left and the low is on the right. The fil
contours for the geopotential height (mass) and velocity field (momentum) for the g
p =30 are shown in Fig. 16. Once again we used the Eulerian Runge—Kutta scheme
p =40 as the reference solution.

Figures 17 and 18 show tthe norms of the mass and momentum with respect to time fc
the gridsp =10, 20, and 30. The errors oscillate with respect to time but they do incree
at a slow rate. However, as in cases 3 and 4, the errors converge to first order.

6.7. Summary of Results

The results obtained for cases 1 and 2 represent very impressive levels of accu
The results were second-order accurate whether the velocity field was constant or char
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FIG. 13. Case 5. The (a) grid, (b) mass, (c) zonal velocity, and (d) meridional velocity orpg#d0 after
7 days.
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FIG. 14. Case 5. Time history study of the mass error for three different grids.
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FIG. 15. Case 5. Time history study of the momentum error for three different grids.
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FIG. 16. Case 6. The (a) grid, (b) mass, (c) zonal velocity, and (d) meridional velocity orpg80 after
5 days.
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FIG. 17. Case 6. Time history study of the mass error for three different grids.

in time. These test cases confirmed that the Runge—Kutta trajectory calculation sct

computes accurate departure points.

Cases 3 and 4 tested the accuracy of the full nonlinear shallow water equations on st
state problems. For case 3 the mass and momentum errors increased with time whil
case 4 they remained constant with time. The results obtained for these two cases were

good, although the convergence rate was around first order.

L2 Norm

0.001 T T T
24 48 72 96 120
time (hours)

FIG. 18. Case 6. Time history study of the momentum error for three different grids.
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Cases 5 and 6 tested the stability of the full nonlinear shallow water equations on ti
dependent problems. Although these test cases do not offer analytic solutions, we car
judge the behavior of the Lagrange—Galerkin algorithm by comparing the solution to sc
other algorithm run on a high-resolution grid. For these two test cases, the Eulerian me
described in Section 3 was used. The solutions obtained for both of these test cases wer
of very good quality; case 5 converged to second order while case 6 converged to first o
Because these test cases do not have analytic solution, the results for these two test
should only be interpreted qualitatively. Nonetheless, these results compare well ag;
results from the literature. In addition, the algorithm conserved mass and total energy
about 005% for all test cases and for all grids.

Upon considering the behavior of our algorithm on the six test cases it can be conclu
thatthe algorithm worked correctly and quite accurately; however, improvements can alw
be made. The one obvious deficiency of the scheme is that the solution of the mass equ
tended to be far more accurate than that of the momentum equations. Although these tw
of equations are decoupled, they are still physically linked through the particle trajector
Therefore, in order to get accurate mass values, the momentum equations must be obt
accurately as well. There seems to be a paradox here and part of the explanation fo
behavior may have to do with solving the full shallow water equations in a decoup
fashion as is done in the Lagrange—Galerkin method. However, this explanation does
seem sufficient to account for the large discrepancies in accuracy between the mas:
momentum.

Recallthatin order to constrain the particles to remain on the sphere a Lagrange multij
was used. Itcan be only conjectured at this point that the Lagrange multiplier is restricting
convergence rate of the momentum equations. It seems that this extra forcing term adve
affects the Lagrange—Galerkin method. To test whether this term is indeed responsibl
the slower rate of convergence, a convergence study of the Eulerian Runge—Kutta me
used as the reference solution in case 5 and 6, was obtained. This method also exhibite
same trend experienced by the Lagrange—Galerkin method, namely that the mass w
order of magnitude more accurate than the momentum, and the method converged tc
order.

Although this inherent problem with the Cartesian form of the equations seems in:¢
mountable, it is of little concern because the final goal of the current project is to consti
a baroclinic model. These barotropic tests have been applied only to test the majorit
the components that comprise the Lagrange—Galerkin scheme. For a baroclinic mode
Lagrange multiplier is no longer needed because the fluid particles are not required t
main on the surface of the sphere. Having fully three-dimensional degrees of freedon
only simplifies the Cartesian equations but should ameliorate the slow convergence e»
ited by the momentum equations. In fact, going from the current barotropic model to
baroclinic version will require very few changes: most of the algorithms remain the sa
but the basis functions rather than being the area coordinates (triangles) will now be
volume coordinates (tetrahedra).

6.8. Computational Cost

Figures 19 and 20 summarize the computational cost of using the Lagrange—Gale
method for various grid configuratiors These results were obtained using case 3 bl
they are generally representative of the method. These results were obtained on a
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FIG. 19. The percentage breakdown of the computational costs incurred by the various operations o

Lagrange—Galerkin method as a function of grid parametier case 3 after 5 days.

Alpha 8400 (EV5 CPU chip) running only one processor at a clock speed of 300 MHz. -
computational cost is divided into three categories: FEM, search, and solve. FEM der
the percent involving any operation typically associated with the finite element meth
This includes the construction of the left- and right-hand side element equations as we
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FIG. 20. The total computational time incurred by the Lagrange—Galerkin method as a function of g

parameterp for case 3 after 5 days.
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the summation of these element contributions which result in the global system of ec
tions. Search involves the percentage of time required for the departure point calculati
searching algorithms, and testing for inclusions. Solve represents the percentage of the
time to invert the mass and momentum matrices. This includes the LU decompositions
the back substitution of these matrices.

Figure 19 shows that for smafl, the finite element and searching algorithms dominat
the CPU time. However, the cost of these operations drops exponentially with increasir
as the solve operation costs increase. In fact, for lar¢fee cost of solving the equations
dominates the computational cost completely. The interesting thing about these resu
that if the algorithm must be made more efficient, it will only be accomplished either
constructing a more efficient matrix solver or by picking a better one. The good new:
that the operations related to the Lagrangian portion of the algorithm, such as the seatrc
of departure points, do not incur significant costs at all. The costs incurred are those w
plague any implicit method, that is, the inversion of a large sparse matrix.

Many other possibilities for increasing the efficiency of the current algorithm can
explored: multigrid-type methods have proven to be the most efficient for solving line
equations, the LU solver can be streamlined by using a node renumbering scheme w
would then allow the storage of the matrix in a tightly banded form, and finally a paral
implementation of the existing algorithms would remove many of the current bottlenec
Currently we are exploring multigrid methods and parallel implementations using O
MP and MPI.

7. CONCLUSIONS

The results obtained for all six problems showed that the weak Lagrange—Galerkin fi
element method offers a viable method for solving the shallow water equations on the spl
Rather than solving the equations in spherical coordinates, the equations are transfo
to Cartesian coordinates, which have two advantages over the equations in spherical s
the equations no longer contain singularities at the poles, and natural (area) coordinate
be constructed for the linear triangles. These area coordinates are the basis functions
to approximate the variables within the elements and are also the interpolation funct
used to determine the value of the variables at the departure and quadrature points. Be
these functions can be written explicitly, they lend themselves to discretizing the equat
simply because the functions, derivatives, and closed form integration rules are all defi
In addition, a new icosahedral grid has been introduced which offers many more pos:s
grid configurations over previous icosahedral grids while possessing a much simpler
structure for searching the departure points. The ideas presented in this paper are ¢
generalizable toward the construction of a parallel baroclinic model, which is the topic
a future paper.

APPENDIX

A.1. Basis Functions

The conservation variables belong to the space

(¢, pU, pv, pw) € HY(Q)
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and their test functions, likewise, are defined as
1/jiw),</2u,</)v,ww) c Hl(Q);

in other words, they belong to the set of square integrable functions whose first derivat
are also square integrable. These functions are, in fact, the linear triangular basis func
and are written as

_ax+by+cz

= Al
Vi detAi,j,k ( )
and have the exact integration rule
1 g !
ay B Y dQ = crossA; %’ A2
/Qw' vivi e By +2) A2
where
CrossAj jk = [(Xj — Xi) x Xk — Xi)| = [Nj j kl,
detAi,j,k =X - Ni,j,ks
and
& =VYjz—YzZj, bi=Xzj —Xjz, G =Xj¥%k—XYj-
The indiced, j, k=1, ..., 3 are cycled in the following order:
k
v N
i —

In addition, these basis functions actually describe the natural or area coordinates
triangle.

A.2. Area Coordinates

If the basis functiong); represented area coordinates on the triargle 3, then these
functions could be written as

CrossAyp j k

, (A.3)
CrossA; j k

Yi(Xp) =
wherexp is any point on the triangla1 » 3 andi, j, k are cyclical through the three vertices
of the triangle. Consider that the basis functions given by (A.1) can be written as

detAp,j,k

—_— A4
detAiyj,k ( )

1/fi (X p) =

and in vector form as

Xp - [(Xj = Xp) X (Xk — Xp)]
Xi - [(Xj — %) x (X —Xi)]

wi (Xp) =
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which can be written more compactly as

Xp - Np,jk

. A.5
Xi - Nijx (A-5)

Yi(Xp) =

The identity
Xi - [Xj X< Xi] = Xi - [(Xj —X%i) x (X — Xi)]

has been used in both the numerator and the denominator. Consider furthexghatah
A1 23,thenNp ; « andN; j  will not necessarily have the same magnitudes (undgssx; )
but they will have the same direction. In other words, siNgg « is also normal taA; 3,
we can also define the plane of the triangle; 3 as

Npjk - Xp—X) =0. (A.6)
Substituting (A.6) into (A.5), we get

Xi *Npjk IXi[INp,j k| COSOy N,
X -Nijk  IXilINijkl cosbxn,,

Yi(Xp) =

wherefy., denotes the angle between the vecioandy. In fact, becausdl j « andN; j «
have the same directiofy ., ;, = 0x:n; ;, and we get

INp,j.kl _ CrossAyp j k
|Ni,j,k| CrossAj j k

wi (Xp) =

Therefore, since crosa; jk is equal to twice the area of the trianglg j ¢, the basis
functions described in (A.1) are, in fact, the area coordinates for a general triangle in
Cartesian space.

A.3. Derivatives

The approximation of any functigp within an element is given by (14) and its derivative
in thes direction as

0p° Y
=> o (A7)

wheres can be eithex, y, or z. However, on the right-hand side of (13) we see that we nee
to know the derivatives op at the grid points themselves for the momentum equation
One possible way of obtaining these derivatives is to consider the following: the deriva
within an element can be written as done previously using the function values themse
at the grid points as given in (A.7). However, if the derivatives at the grid points themsel
were known, then we could also write the derivatives within an element as

3

= P — A.8
s ;w’ s (A8)
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and equating (A.7) and (A.8) in a weak sense, we arrive at

/Qwiwj dﬂaa%=/ﬂl/fi%%d9, (A.9)
where the element contributions are summed in order to form a global system which
yields the derivatives at the grid points. This derivative matrix is symmetric positive defir
and can be inverted easily; however, it can also be diagonalized for the sake of efficie
This strategy can be used to obtain second-order-accurate derivative approximations a
in fact, quite similar to a centered finite difference scheme (see [4]). In addition, it does h
a mathematical basis, as it is the exact same scheme obtained by attempting to approx
the derivatives by using the chain rule

_ 9

d
(’Oax

dp Jdp
dx+ —dy+ —d
+ ay y+ 32 z
where for each element, we have the contributions to the veftexn the j andk vertices
;i ;i ap;
Pi—pi = a—X'(Xj — %)+ a—yl(yj - W)+ B—Z'(Zj - 7)
and
d¢p; d¢pi d¢p;
—pi=— Xk —X)+ — Ok —VYi)+ —(Z—z).
Pk Pi aX(k |)+ 3y (yk yl)“l‘ 3Z(k Z|)
This 2x 3 system can be written in the matrix form

09
(M—Kﬂw—mﬂa—m} - _[%—wq
% —X%i) (Y — ¥i) (zZx — Z) 3 Clek—w ]
a0z
which is solved for at the element level and an area-weighted average yields the deriva
atthe grid points. In other words, equation (A.9) can be thought of as the derivatives obta
by an elemental approximation to the chain rule.

A.4. Integration

All of the finite element integrals can be obtained in closed form using (A.2). This ¢
be easily accomplished for all of the left hand side integrals (those antim®). However,
for the right-hand side integrals (those at timehis would require finding the intersection
regions between these Lagrangian elements (those atfiraad the Eulerian elements
comprising the grid (see [3, 5] for details). Therefore, for efficiency we have used a qui
guadrature rule for all of the right-hand side integrals.
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