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The weak Lagrange–Galerkin finite element method for the 2D shallow water
equations on the sphere is presented. This method offers stable and accurate solu-
tions because the equations are integrated along the characteristics. The equations
are written in 3D Cartesian conservation form and the domains are discretized us-
ing linear triangular elements. The use of linear triangular elements permits the
construction of accurate (by virtue of the second-order spatial and temporal accu-
racies of the scheme) and efficient (by virtue of the less stringent CFL condition of
Lagrangian methods) schemes on unstructured domains. Using linear triangles in 3D
Cartesian space allows for the explicit construction of area coordinate basis func-
tions thereby simplifying the calculation of the finite element integrals. The triangular
grids are constructed by a generalization of the icosahedral grids that have been typ-
ically used in recent papers. An efficient searching strategy for the departure points
is also presented for these generalized icosahedral grids which involves very few
floating point operations. In addition a high-order scheme for computing the charac-
teristic curves in 3D Cartesian space is presented: a general family of Runge–Kutta
schemes. Results for six test cases are reported in order to confirm the accuracy of the
scheme.

Key Words:finite element method; icosahedral grid; Lagrange–Galerkin; Runge–
Kutta; shallow water equations; spherical geometry; unstructured grid.

1. INTRODUCTION

Due to the recent paradigm shift in large-scale computing from vector machines (having
few but powerful processors) to distributed memory machines (having a multitude of less
powerful processors) researchers have begun to explore methods other than the spectral
method for solving the shallow water equations on the sphere. Besides not parallelizing well,
the spectral method also suffers from the restriction that the grid be a longitude–latitude
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grid which packs too many unnecessary points at the poles. By exploring other classes of
methods, researchers are also free to choose other types of grids. For example, in [11] cubic
gnomonic grids are used in conjunction with the spectral element method. In [6] icosahedral
grids are employed with a finite differencing spatial discretization. In [1] a spiral triangular
grid similar to the icosahedral grid is used with the weak Lagrange–Galerkin method.
(For a complete review of grids for tiling the sphere see [10].) However, many of these new
approaches continue to follow in the footsteps of the spectral method by writing the equations
in spherical coordinates; the only exception is the finite difference method presented in [6],
which solves the equations in a coordinate invariant form.

Although spherical coordinates seem to be the natural choice, they present many problems
and associated computational costs. As we have mentioned previously, spectral methods
on the sphere require the use of latitude–longitude Gaussian grids, which introduces too
many redundant points around the poles; this situation is exacerbated as the resolution
is increased. In addition, spherical coordinates result in singularities at the poles for all
discretization methods except the spectral method (which uses Gaussian quadrature rules
that do not contain the poles as quadrature points). The problem of singularities at the poles
caused by spherical coordinates can be circumvented by applying rotation transformations
(as is done in [11] from spherical to gnomonic space) or by using Cartesian coordinates in
which case the equations no longer contain singularities at the poles without the need to
introduce any type of rotation transformation.

In [2, 3, 9] the equations are solved in Cartesian rather than spherical coordinates. In [2] the
Lagrange multiplier approach for transforming the shallow water equations from spherical
to Cartesian coordinates is introduced. This idea is then used to construct a semi-Lagrangian
shallow water model but on longitude–latitude grids, an unnecessary remnant of spectral
methods. In [9] the Taylor–Galerkin method in 3D Cartesian space using icosahedral grids
is presented. This work is the closest to that of our previous work presented in [3] in that the
approach uses neither spherical coordinates to write the governing equations nor spectral
methods to solve them. However, in [9], the work stops short of that in [3] by then mapping
the 3D linear triangles to a local 2D space, an unnecessary step since all the computations
can be carried out in 3D space thereby avoiding any type of mapping to a local space. In [3]
we developed a weak Lagrange–Galerkin method in 3D Cartesian space using triangular
linear basis functions on icosahedral grids. In this work, all of the computations take place
in 3D Cartesian space, thus avoiding any local mappings or rotation transformations.

Using Cartesian coordinates avoids another obstacle encountered with spherical coordi-
nates, that is, that explicit basis functions cannot be obtained in this space. By using 3D
Cartesian coordinates, explicit basis functions can be constructed, which means that these
functions (which are the natural or area coordinates) can be used for obtaining all of the
finite element integrals in closed form and interpolating the values of the departure points
required by all Lagrangian schemes. This is the approach taken in our current paper.

The Lagrange–Galerkin method has been shown to be very attractive for solving hyper-
bolic equations on the sphere [1, 3]. This method combines themethod of characteristics
with the finite element method. Because this method represents an integration of the equa-
tions along the direction in which information is propagating, namely the characteristics,
the method is not only very accurate but also quite stable even for very large Courant
numbers. The current paper is an extension of the ideas presented in [3] but for the full
nonlinear shallow water equations. The Lagrange–Galerkin method is implemented on a
new class of grids which contains the typical icosahedral grids. These new grids offer much
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more flexibility in the construction of grids over the typical icosahedral grids. In addition,
a searching strategy for locating departure points is introduced for these new grids. This
searching strategy is much faster than the icosahedral quadtree-like data structure originally
introduced in [3]. Finally, the high-order general family of Runge–Kutta schemes for com-
puting the departure points on the plane introduced in [5] is extended to the sphere. This
method is more accurate than the midpoint rule typically used in Lagrangian schemes (see
[5] for a comparison of this method with the composite midpoint rule).

2. SHALLOW WATER EQUATIONS

The 2D spherical shallow water equations in conservation form are
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This system can now be written more compactly as

∂ϕ

∂t
+∇ · (ϕu) = S(ϕ) (2)

where
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, u =
 u
v

w

, S(ϕ) = FP+ FR+ FC, (3)

FP = −ϕ∇ϕ, FR = − f (r × ϕu), FC = µr ,
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and

f = 2Äz

a
,

whereÄ anda are the rotation of the earth and its radius, respectively. In other words,FP

is the force due to pressure,FR is the force due to the rotation of the earth (Coriolis),FC

is the force required to constrain the fluid particles to remain on the surface of the sphere,
andµ is the Lagrange multiplier used to satisfy this condition. This term is best obtained in
discrete form. If it is obtained from the continuous equations, then for the discrete equations
the particles may no longer be guaranteed to remain on the surface of the sphere.

The equations are solved for the four conservation variablesϕ, ϕu, ϕv, andϕw. Clearly,
we could also include other forcing functions and in this case they would be included within
S(ϕ). Before proceeding to the discretization of the weak Lagrange–Galerkin method, let
us first look at the discretization obtained by an Eulerian method. This will serve both for
contrast and also because we require one Eulerian time step as the weak Lagrange–Galerkin
method requires two known time levels (t = 0 andt = 1t) prior to its usage.

3. EULER–GALERKIN METHOD

Beginning with (2) we can define an Eulerian finite element method by taking the weak
form ∫

Ä

ψ

[
∂ϕ

∂t
+∇ · (ϕu)− S(ϕ)

]
dÄ = 0,

whereψ denotes the basis functions. Integrating by parts (Green’s theorem) such as

∇ · (ψϕu) = ψ∇ · (ϕu)+ (ϕu) · ∇ψ

yields ∫
Ä

ψ
∂ϕ

∂t
dÄ+

∫
0

n · uψϕ d0 −
∫
Ä

∇ψ · (ϕ u) dÄ−
∫
Ä

ψS(ϕ) dÄ = 0.

In the case of flow on a sphere, the second integral vanishes because the basis functions are
chosen to be continuous across element interfaces and there are no physical boundaries; in
other words, ∫

0

n · uψϕ d0 = 0,

and we are left with∫
Ä

ψ
∂ϕ

∂t
dÄ =

∫
Ä

∇ψ · (ϕu) dÄ+
∫
Ä

ψS(ϕ) dÄ.

The resulting system of ordinary differential equations can now be written as

∂ϕ

∂t
= H(ϕ),
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which after integrating in time by a general family of Runge–Kutta schemes yields

ϕk+1 = ϕn +1tβH(ϕ)k−1,

where

β = 1

M − k+ 1
, k = 1, . . . ,M, and H(ϕ)0 = H(ϕ)n.

This scheme is required for the first time step because, as we will see, the weak Lagrange–
Galerkin method, although a two-time level scheme, requires two previously known time
levels in order to calculate the particle trajectories.

The Lagrange multiplier used in the Eulerian and Lagrangian schemes presented in this
paper is obtained by the following method: letϕu∗ be the solution of the momentum
equations by either the Runge–Kutta or Lagrange–Galerkin scheme. Since we require that
the velocity field and the outward pointing normal to the sphere be orthogonal,

ϕu · r = 0.

Therefore, the constrained momentum equations satisfy the relation

ϕu = ϕu∗ + µr

and taking the scalar product ofr yields the Lagrange multiplier

µ = −ϕu∗ · r
a2

,

wherea is the radius of the earth. This procedure is applied at the end of each time step in
order to ensure that the velocity field remains orthogonal to the radial vector thereby con-
straining the fluid particles to remain on the surface of the sphere throughout the integration.
It is uncleara priori what effects this procedure has on the formal order of accuracy of the
scheme. A stability analysis of the equations with this term is in order; this is the topic of a
future research note.

4. WEAK LAGRANGE–GALERKIN METHOD

4.1. Spatial Discretization

The weak form of(2) is∫
Ä

ψ

[
∂ϕ

∂t
+∇ · (ϕu)− S(ϕ)

]
dÄ = 0

and integrating by parts as such

∂

∂t
(ψϕ) = ψ ∂ϕ

∂t
+ϕ∂ψ

∂t
and ∇ · (ψϕu) = ψ∇ · (ϕu)+ (ϕu) · ∇ψ
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we get ∫
Ä

[
∂

∂t
(ψϕ)+∇ · (ψϕu)

]
−ϕ

[
∂ψ

∂t
+ u · ∇ψ

]
− [ψS(ϕ)] dÄ = 0. (4)

The first bracketed term of(4), using Reynold’s transport theorem, can be written as

d

dt

∫
Ä

(ψϕ) dÄ =
∫
Ä

[
∂

∂t
(ψϕ)+∇ · (ψϕu)

]
dÄ, (5)

and the second bracketed term is actually the characteristic equation

dψ

dt
≡ ∂ψ

∂t
+ u · ∇ψ = 0, (6)

where

dx(t)
dt
= u(x(t), t) (7)

is used to predict the particle trajectories along the characteristics where the basis functions
vanish. Substituting(5) and(6) into (4) yields the system

d

dt

∫
Ä

(ψϕ) dÄ =
∫
Ä

ψS(ϕ) dÄ. (8)

The advection operator has disappeared from the equations; however, the correct particle
trajectories are accounted for by the trajectory equation (7). In addition, consider that the
divergence of the velocity has also disappeared or rather has been absorbed by the Reynold’s
transport theorem (see [5] for further details).

4.2. Time Discretization

Integrating(8) in time by theθ algorithm yields∫
Än+1

(ψϕ) dÄn+1 =
∫
Än

(ψϕ) dÄn

+1t

[
θ

∫
Än+1

ψS(ϕ) dÄn+1+ (1− θ)
∫
Än

ψS(ϕ) dÄn

]
, (9)

which represents a two-time-level scheme and gives the explicit rectangle rule, the trapezoid
rule, and the implicit rectangle rule forθ = 0, 1

2, 1, respectively. In this paperθ = 1
2 is used

throughout because it yields a second-order-accurate scheme and is unconditionally stable
with respect to the advection operator. The other two schemes are both first order:θ = 0 is
not very stable whileθ = 1 is quite diffusive. Clearly, Eqs.(7) and(9) define a two-time-
level scheme requiring the variables at timesn andn+ 1. However, in the following section
it is shown that in order to solve Eq.(7) accurately requires the velocity field to be known
at previous time levels. The accurate solution of the trajectory equation is perhaps the most
important part of Lagrangian methods. In the next sections we extend our new method for
calculating the particle trajectories described in [5] to the sphere.
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4.2.1. Midpoint rule. In most Lagrangian methods particle trajectories are computed
by the midpoint rule

x(tn+1)− x(tn) = 1t u
(
x
(
tn+1/2

)
, tn+1/2

)
,

which requires the following extrapolation of the velocity field,

u
(
tn+1/2

) = 3

2
u(tn)− 1

2
u(tn−1), (10)

where the termu(tn) refers to the velocity values at timen at each grid point whereas
u(x(tn), tn) refers to the velocity values at timen but along the characteristics. Since we
need to knowx(tn+1/2), we have to assume that the trajectory fromx(tn+1)→ x(tn) is linear,
in other words,

x
(
tn+1/2

) = x(tn+1)+ x(tn)

2
,

which then yields the iterative equation

x
(
tn+1/2

) = x(tn+1)− 1t

2
u
(
x
(
tn+1/2

)
, tn+1/2

)
. (11)

We solve for the midpoint by starting at the arrival pointx(tn+1) as the first approximation
to x(tn+1/2). Continuing in this iterative fashion results in convergence in less than five
iterations.

This scheme is second order accurate in space and time and is used quite extensively in
the semi-Lagrangian community. On the sphere, the midpoint rule has to be modified such
that the new departure points computed by(11) remain on the surface of the sphere. In other
words, after each iteration we must apply the projection

xd = a

|xd|xd,

wherea is the radius of the sphere.
However, the weakness of this scheme is that upon obtaining the correct midpoint trajec-

tories, the departure points are then computed assuming a linear variation in the trajectories
as shown in(11).

4.2.2. Runge–Kutta scheme.A higher-order approximation can be obtained by apply-
ing the Runge–Kutta scheme to the trajectory equation (7) yielding

x(tk) = x(tn+1)−1tβu(x(tk−1), tk−1), (12)

where

β = 1

M − k+ 1
, k = 1, . . . ,M, and tk−1 =

{
tn+1 for k = 1

tn+1−β for k > 1
.

This requires knowingu(x(tn+1−β), tn+1−β), which can be extrapolated from the velocity
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field at the previous time levels. We could use the extrapolation given in(10) but this would
formally give only second-order approximations for the velocity. Therefore, the most con-
sistent approach is to use an extrapolation of order equal to that of the Runge–Kutta scheme.
At the first Lagrange–Galerkin step(t = 21t)we already know the velocity at timest =1t
andt = 0 (because the first time step is carried out with the Eulerian method). Therefore at
this time step we can only use a maximum of a second-order scheme. Therefore we use a
second-order extrapolation as well as a second-order Runge–Kutta scheme(M = 2). How-
ever, at the next time step(t = 31t) we now know the velocity fields att = 21t,1t and 0,
thereby allowing us to use a third-order scheme. Finally, at the third Lagrange–Galerkin
step (t = 41t) we know the velocity field at sufficient time levels to allow us to use a
fourth-order scheme. The extrapolations of the velocity field at timen+ 1−β then can be
obtained from the Taylor series expansions, giving

u(tn+1−β) = (1+ a+ b+ c)u(tn)+ au(tn−1)+ bu(tn−2)+ cu(tn−3),

where

a = δ b = 0 c = 0 for M = 2

a = 2δ + δ2 b = − 1
2δ − 1

2δ
2 c = 0 for M = 3

a = 3δ + 5
2δ

2+ 1
2δ

3 b = − 3
2δ − 2δ2− 1

2δ
3 c = 1

3δ + 1
2δ

2+ 1
6δ

3 for M = 4

and

δ = 1− β.

However, it should be understood that getting fromu(tn) to u(x(tn), tn) requires an inter-
polation in space becausex(tn) generally will not fall on a grid point. This is where having
explicit basis functions is an advantage because we now have an inherent mechanism for
interpolating the velocity field at any pointx(tn). In this algorithm, the interpolation is
achieved by using the linear finite element basis functions using the values at the vertices
of the triangular element containing this point.

This scheme does not require a first guess starting point as in the previous scheme because
this is not an iterative scheme but rather is a multi-step scheme. Therefore we begin from
the arrival point, as in the previous scheme, and step through toward the departure point.
In addition, upon computing the next value from(12) we have to enforce the new point to
remain on the sphere. The simple projection

xk = a
xk

|xk|

enforces this constraint. The advantage of this scheme over the midpoint rule is that the
Runge–Kutta scheme never assumes a linear trajectory [5]. Because of its higher-order
approximation the Runge–Kutta scheme is better equipped to compute more accurate tra-
jectories than the midpoint rule. A comparison between the composite midpoint rule and
the Runge–Kutta scheme is given in [5].
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4.3. Element Equations

Returning to(9) and substituting the conservation variables from(3) gives
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which are the equations to be solved within each element. The mass (geopotential) and
momentum equations can be decoupled as follows: the mass equation is no longer a function
of velocity except through the trajectory equation (7),

∫
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while theu-momentum,

∫
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v-momentum,

∫
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∫
Än+1

ψ

[
f

(
x

a
ϕw − z

a
ϕu

)]
dÄn+1

=
∫
Än

ψ(ϕv) dÄn +1t (1− θ)
∫
Än

ψ

[
−ϕ ∂ϕ

∂y
+ f

(
x

a
ϕw − z

a
ϕu

)]
dÄn
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andw-momentum,∫
Än+1

ψ(ϕw) dÄn+1−1tθ
∫
Än+1

ψ

[
f

(
y

a
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a
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=
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are all coupled through the Coriolis terms.

4.4. Global Equations

Approximating the conservation variables within each elementÄ by the expansion

ϕ =
3∑

j=1

ψ jϕ j (14)

and adding all of the contributions from the elements to each of the global grid points results
in the following linear system of global equations

Ai, j ϕ
n+1
j = bϕi (15)

and  Ai, j −Di, j Ci, j

Di, j Ai, j −Bi, j

−Ci, j Bi, j Ai, j


 (ϕu) j

(ϕv) j

(ϕw) j
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=

 bu
i

bvi
bwi

 i, j = 1, . . . , Np, (16)

whereNp denotes the number of grid points in the grid. The elements of the above block
matrix are

Ai, j =
∫
Än+1

ψiψ j dÄn+1

Bi, j = 1tθ
∫
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ψiψ jψkψl

(
xl

a

)
fk dÄn+1
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∫
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∫
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(
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a
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u
i , b

v
i , b

w
i are the right-hand side vectors for the mass and momentum equations,

respectively, and are defined as

bϕi =
∫
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ψ(ϕ) dÄn
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i =

∫
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ψ(ϕu) dÄn +1t (1− θ)
∫
Än

ψ

[
−ϕ ∂ϕ

∂x
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a
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)
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bvi =
∫
Än

ψ(ϕv) dÄn +1t (1− θ)
∫
Än

ψ

[
−ϕ ∂ϕ

∂y
+ f

(
x

a
ϕw − z

a
ϕu

)]
dÄn

+1tθ
∫
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ψ

(
−ϕ ∂ϕ

∂y

)
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bwi =
∫
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ψ(ϕw) dÄn +1t (1− θ)
∫
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ψ

[
−ϕ ∂ϕ

∂z
+ f

(
y

a
ϕu− x

a
ϕv

)]
dÄn

+1tθ
∫
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ψ

(
−ϕ ∂ϕ

∂z

)
dÄn+1.

The right-hand side values are obtained by integrating onÄn, which represents the element
at the departure points along the characteristics. In this paper, the integrals are obtained
using a quintic quadrature rule (see [5] for further details).

Consider that the matricesA, B,C, and D are all symmetric positive definite but the
global system is not. In fact, the global system is skewed symmetric and for this type
of system there is no one best solver. The global matrix is sparse, however, and iterative
methods may be the best methods of solution. The good news is that although we began with
a system of nonlinear equations, discretizing the equations by the weak Lagrange–Galerkin
method results in a system of linear equations.

Because the system is not symmetric positive definite we cannot utilize many of the best
known solvers such as the conjugate gradient method. There are, however, variants of these
methods that can be used such as the biconjugate gradient method. Because the system is
quite sparse, direct methods may be inefficient. For the moment, we are employing a direct
LU decomposition method for simplicity, but we are also exploring ad hoc direct solvers
for this type of a skewed-symmetric matrix and multi-grid methods.

Another possibility for solving the momentum equations more efficiently is to simplify
the equations in order to make them symmetric positive definite. This approach is introduced
in [1] and the strategy is to extrapolate the velocity field (using the values atn andn− 1) to
get an approximation atn+ 1. This now allows moving theB,C, andD matrices in(16)
to the right-hand side. Each conservation variable can now be solved explicitly; in other
words, all four equations are now completely decoupled. However, doing this restricts the
size of the time step that can be used but the advantages are that only one left-hand side
matrix needs to be stored and inverted. This matrix is the mass matrix which is symmetric
positive definite and can be inverted quite easily using straightforward conjugate gradient
methods.

5. ICOSAHEDRAL GRIDS

One of the difficulties of using icosahedral grids is that we are restricted to only a few
possible grids because the number of grid points increases by a factor of 4 with each
refinement of the grid. In other words, from the fourth (n= 4) to fifth (n= 5) refinement
we go from 2562 to 10,242 grid points (see [3, 6]). This is a very limiting constraint when
trying to do, say, a grid convergence study on a workstation. A way around this dilemma is
to construct the following general icosahedral grid.

We begin with the initial icosahedron having 12 points and 20 equilateral triangular
elements. Then we subdivide each triangle of the initial icosahedron by apth-order Lagrange
polynomial. Before doing so, however, it is best to map this triangle onto a gnomonic space.
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The most unbiased mapping is obtained by mapping about the centroid of the icosahedral
triangle. (Because all of the initial triangles are equilateral, the centroid also happens to be
the circumcenter of the triangle.) Let(λc, θc) be the centroid of the triangle we wish to map.
Then, the gnomonic mapping is given by

x = a cosθ sin(λ− λc)

sinθc sinθ + cosθc cosθ cos(λ− λc)
,

(17)

y = a[cosθc sinθ − sinθc cosθ cos(λ− λc)]

sinθc sinθ + cosθc cosθ cos(λ− λc)
,

which is rather complicated. However, if we first apply a rotation mapping whereby in the
new coordinate system the coordinates(λ, θ) are located at(0, 0), then(17) becomes

x = a tanλ′, y = a tanθ ′ secλ′, (18)

where the rotation mapping is

λ′ = arctan

[
cosθ sin(λ− λc)

sinθc sinθ + cosθc cosθ cos(λ− λc)

]
,

(19)
θ ′ = arcsin[cosθc sinθ − sinθc cosθ cos(λ− λc)].

This approach results in the construction of a general icosahedral grid with the properties

Np = 10(p− 1)2+ 20(p− 1)+ 12

Ne = 2(Np− 2)

Ns = 3(Np− 2),

whereNp, Ne, andNs denote the number of points, triangular elements, and sides comprising
the grid, andp is the order of the Lagrange polynomial used to subdivide the 20 initial
triangles of the icosahedron. If we substitutep= 2n then we recover the results for the
icosahedral grids used in [3, 6, 9]. The results of the new icosahedral grid (p) and the old
icosahedral grid (n) are shown in Table I. For up to 10,242 grid points there are only 5
possible old icosahedral grid configurations whereas there are 32 possible new icosahedral
grids.

5.1. Searching Algorithms

The crux of any Lagrangian scheme is the accurate calculation of the particle trajectories,
in other words, the correct solution of the trajectory equation (7). Once the correct trajectories
are computed, it then remains to interpolate the conservation variables at the departure
points. In [3] a quadtree-type data structure was introduced which took advantage of the
subdivision of each triangle into four smaller triangles, as is done in the typical icosahedral
grids. However, because we no longer have this quadtree structure, we must devise an
alternate searching strategy. The general icosahedral grid, in fact, makes it much easier to
search for the departure points.

We begin by constructing an integer pointer array intmatree [1 : 20, 1 : p2], which stores
the triangular element identification numbers contained within each of the first initial 20
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TABLE I

The Number of Grid Points, Elements, and Sides for the Icosahedral Grid

p n Np Ne Ns

1 0 12 20 30
2 1 42 80 120
4 2 162 320 480
8 3 642 1280 1920

10 — 1002 2000 3000
15 — 2252 4500 6750
16 4 2562 5120 7680
20 — 4002 8002 12000
30 — 9002 18000 27000
32 5 10242 20480 30720
40 — 16002 32000 48000
64 6 40962 81920 122880

Note.The generalized (new) icosahedral grid is given byp and the typical (old) icosa-
hedral grid is given by the different refinement valuesn.

triangles of the icosahedron. For a given departure point, we search through the initial
triangles of the icosahedron and use the inclusion tests described in [3]. Once we have the
i th initial triangle which contains the point, we can then simplify the search to that of an
ordered list because, after all, thep2 triangles (children) contained within each initial triangle
(parent) are equally spaced within their parent element. Therefore, by first mapping the
departure point in Cartesian coordinates(xd, yd, zd) to the corresponding local coordinates
(ξd, ηd)of the parent, we can then compute the indices of the child that contains this departure
point. (Figure 1 shows a parent triangle forp= 3.) In [3] the conditions for testing for an
inclusion are described. In that paper the area coordinates are used for this test. Therefore,

FIG. 1. A schematic of one of the initial 20 triangles of the icosahedron forp= 3 which yieldsp2 subtriangles.
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since the area coordinates for the departure point are defined by

ψ1(xd, yd, zd) = 1− ξd− ηd

ψ2(xd, yd, zd) = ξd (20)

ψ3(xd, yd, zd) = ηd,

we automatically have the mapping from Cartesian to local space. The indices of the child
which contains this point are then given by the relations

id = 1+ int(p ξd), jd = 1+ int(pηd),

where int is the integer function. However, the local coordinates ofxd inside the triangular
element defined by(id, jd) are not equal to(ξd, ηd) and so we must map this local coordi-
nate from the parent element to its child(id, jd). This can be accomplished by using the
transformations

ξd = p ξd− (id− 1), ηd = pηd− ( jd− 1),

which essentially scales the local coordinates from [0, 1] to [0, p]. This transformation
yields the local coordinates of the departure point in the square(id, jd), as is shown in
Fig. 2; however, there are two triangles on this square and we need to determine which one
of these two triangles contains the point. In order to determine which triangle contains the
departure point, we simply test the value of the function along the hypotenuse

if 1 − ξd− ηd ≥ 0 then lower triangle

if 1 − ξd− ηd < 0 then upper triangle

and rewrite the basis functions according to the result of this test. For example, if the lower
triangle (left) contains the point, then the basis functions are given by(20), whereas if the

FIG. 2. A schematic of the initial triangle of the icosahedron in local coordinate space.
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upper triangle (right) contains the point, then the basis functions are given by

ψ1(xd, yd, zd) = ξd+ ηd− 1

ψ2(xd, yd, zd) = 1− ξd (21)

ψ3(xd, yd, zd) = 1− ηd,

which amounts to making the change of coordinatesξd= 1− ξd and ηd= 1− ηd. This
searching strategy requires only one set of inclusion tests to determine whether a trian-
gle contains the departure point. After the initial triangle (parent) is found, the rest of
the searching strategy simplifies to searching an ordered table using a few floating point
operations.

6. RESULTS

For the numerical experiments, the following terms are used in order to judge the perfor-
mance of the scheme: theL2 error norms for the mass and momentum,

M =
∫
Ä
(ϕexact− ϕ)2 dÄ∫
Ä
ϕ2

exactdÄ

U =
∫
Ä
(uexact− u)2+ (vexact− v)2+ (wexact− w)2 dÄ∫

Ä
u2

exact+ v2
exact+ w2

exactdÄ
,

the trajectory norm,

T =
∫
Ä

(
xd− xexact

d

)2
dÄ∫

Ä

(
xa− xexact

d

)2
dÄ

,

where a and d denote the arrival and departure points, and the two additional conservation
measures

M1 =
∫
Ä
ϕ dÄ∫

Ä
ϕexactdÄ

and

M2 =
∫
Ä
ϕ(u2+ v2+ w2)+ ϕ2 dÄ∫

Ä
ϕexact

(
u2

exact+ v2
exact+ w2

exact

)+ ϕ2
exactdÄ

.

TheL2 error normsM andU compare the root mean square percent errors of the numerical
and exact solutions,T measures the accuracy of the trajectories,M1 measures the conser-
vation property of the mass, andM2 measures the conservation of the total available energy.
The ideal scheme should yieldL2 error and trajectory norms of zero, and mass and energy
measures of one.

Six test cases are used in order to test the algorithm. Test cases 1, 3, 4, and 5 correspond
to test cases 1, 2, 3, and 6 given in [12]. Test case 2 is similar to case 1 but for a time-
dependent velocity field and is given in [1], whereas test case 6 is given in [7]. Test cases 1
and 2 involve the mass equation only whereas the remainder of the test cases concern the
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full shallow water equations. In addition, cases 1–4 have analytic solutions and are used to
determine the accuracy of the Lagrange–Galerkin method quantitatively. Test cases 5 and
6, on the other hand, do not have analytic solutions and are thus only used to determine the
accuracy of the scheme qualitatively. All the cases were run using a time step twice as large
as that allowed by the second-order Runge–Kutta Eulerian finite element scheme.

6.1. Case 1: Steady-State Advection

This test case concerns the solid body rotation of a cosine wave. It only tests the mass
(geopotential) equation as the velocity field remains unchanged throughout the computation.
Results are reported after one full revolution, which corresponds to an integration of 12 days.

By using the mapping from spherical to Cartesian space

x = a cosθ cosλ

y = a cosθ sinλ (22)

z = a sinθ,

where

λ = arctan

(
y

x

)
(23)

θ = arcsin

(
z

a

)
we can write the initial conditions in terms of Cartesian coordinates. The spherical coordi-
nates(λ, θ) correspond to the longitude and latitude. This results in the following velocity
field in Cartesian space

u = −us sinλ− vs sinθ cosλ

v = +us cosλ− vs sinθ sinλ

w = +vs cosθ,

whereus andvs are the zonal and meridional velocity components in spherical coordinates.
A convergence study is shown in Fig. 3 for various grids. This figure shows that refining

the grid by a factor of two increases the accuracy by a factor of four. In other words, this
figure is showing that the method is second-order accurate. Figure 4 shows theL2 norm
of the mass with respect to time for the gridsp= 8, 16, and 32. This figure shows that the
second-order accuracy is maintained throughout the 12-day integration. Figure 5 shows the
effects of the time step on the solution accuracy for the gridp= 16. The trajectory error
increases with an increase in time step, but the mass error decreases, reaches a plateau,
and then increases. This plot shows that for a given problem, there is an optimal time
step. The reason we do not see a decrease in the mass error with decreasing time step is
that although the trajectories become more accurate, more time steps also require more
interpolations. Because interpolations are used to obtain the conservation variables at the
quadrature points, we then expect a decrease in accuracy as the number of interpolations
increase. This behavior will remain regardless of the order of the interpolations. In other
words, going to a higher-order interpolation will not make this source of error disappear.
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FIG. 3. Case 1. Convergence study of the mass error.

6.2. Case 2: Time-Dependent Advection

This test case is similar to case 1 except that the velocity field is now a function of time
and is given in [1] as

u = (−us sinλ− vs sinθ cosλ)

(
1+ cos

tω

a

)

FIG. 4. Case 1. Time history study of the mass error for three different grids.
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FIG. 5. Case 1. Time-step study of the mass (M) and trajectory (T) errors for the gridp= 16.

v = (+us cosλ− vs sinθ sinλ)

(
1+ cos

tω

a

)
w = (+vs cosθ)

(
1+ cos

tω

a

)
,

where the time is normalized such that it is in the range

t ∈ [0, 1]

andω is the angular velocity as given in [12] as

ω = 2πa

12 days
,

wherea is the radius of the earth. At the beginning and end of the revolution, the velocity
is twice the steady-state value (case 1) and zero at a half revolution. This test case is good
for determining the accuracy of the trajectory calculations (Eq. (7)) and to determine the
sensitivity of the time step on a time-dependent velocity field.

The exact solution of this test case (as well as case 1) is given by

ϕexact(x, t +1t) = ϕ(x−1tu, t).

By applying a rotation transformation, we get the arrival points in the rotated space

λ′a = arctan[cosθa sin(λa− λα), cosθa cos(λa− λα)cosθα + sinθa sinθα]

θ ′a = arcsin[sinθa cosθα − cosθa cos(λa− λα)sinθα] ,
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which now only consists of motion about the equator. The departure points in the rotated
space are

λ′d = λ′a−
[
1tω

a
+ sin

(t +1t)ω

a
− sin

tω

a

]
θ ′d = θ ′a,

whereλα = 0 andθα =α. The parameterα represents the axis of rotation with respect to
the equator. In other words,α= 0 corresponds to rotation about the equator whereasα= 90
corresponds to a rotation about the poles. (The valueα= 0 was used for all of the test
cases, as there was no noticeable difference between various values ofα). Using the inverse
transformation, we get

λd = λα + arctan[cosθ ′d sinλ′d, cosθ ′d cosλ′d cosθα − sinθ ′d sinθα]
(24)

θd = arcsin[cosθ ′d cosλ′d sinθα + sinθ ′d cosθα],

which are the departure points in the original (unrotated) spherical space. The departure
points in Cartesian space can now be obtained using the mapping (22).

A convergence study is shown in Fig. 6 for various grids. The results presented for this
test case also show that the scheme is yielding second order accuracy. Figure 7 shows the
L2 norm of the mass with respect to time for the gridsp= 8, 16, and 32. The results for this
test case are similar to those of case 1. This test case tells us that the particle trajectories are
being computed accurately regardless of the time-dependent velocity field. Figure 8 shows
the effects of the time step on the solution accuracy for the gridp= 16. In order to get
accuracies of the same order of accuracy as those obtained for case 1, we had to run time
steps half the size of those used in case 1. This is because at the beginning and at the end
of the 12 day integration, the velocity field for this case is twice as large as the steady-state

FIG. 6. Case 2. Convergence study of the mass error.
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FIG. 7. Case 2. Time history study of the mass error for three different grids.

case. Otherwise, the results between cases 1 and 2 are identical. Having confidence in the
precision of our particle trajectories, we next turn to the full shallow water equations.

6.3. Case 3: Global Steady-State Nonlinear Zonal Geostrophic Flow

This case is a steady-state solution to the nonlinear shallow water equations. The equations
are geostrophically balanced and remain so for the duration of the 5-day integration. The
velocity field remains constant throughout the computation, while the geopotential height

FIG. 8. Case 2. Time-step study of the mass (M) and trajectory (T) errors for the gridp= 16.
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FIG. 9. Case 3. Convergence study of the mass (M) and momentum (U) errors.

undergoes a solid body rotation. The velocity field is the same field used in case 1, and the
geopotential is given as a constant band. Since the initial geopotential height rotates along
its axis of isotropy, the solution of the geopotential height looks the same throughout the
time integration. In this sense, it is a steady-state solution to the shallow water equations.

A convergence study for the mass and momentum errors is shown in Fig. 9 for var-
ious grids. The errors for the mass and momentum converge at the same rate and are
approximately of the same order of magnitude. Figure 10 shows theL2 norm of the mass

FIG. 10. Case 3. Time history study of the mass error for three different grids.
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FIG. 11. Case 4. Convergence study of the mass (M) and momentum (U) errors.

with respect to time for the gridsp= 8, 16, and 32. The solution is clearly converging for
increased resolution but the rate appears to be closer to first rather than second order.

6.4. Case 4: Steady-State Nonlinear Zonal Geostrophic Flow with Compact Support

This case is similar to case 3 except that the velocity is zero everywhere except in a
very small isolated region. This isolated region, or jet, encapsulates the flow and restricts
the geopotential height field to remain within a very confined region. The results reported
below are for a 5-day integration.

Figure 11 shows that the mass and momentum converge at roughly the same rate but
the mass is more accurate than the momentum by an order of magnitude. Figure 12 shows
theL2 norm of the mass with respect to time for the gridsp= 8, 16, and 32. TheL2 norm
remains constant throughout the 5-day integration. This case also appears to be converging
at a first-order rate both for the mass and momentum.

6.5. Case 5: Rossby–Haurwitz Wave

Although these waves are not analytic solutions to the shallow water equations, they have
become a de facto test case. In a nondivergent barotropic model, the initial geopotential
height field (mass) undergoes a solid body rotation in a counterclockwise direction (when
viewed from the north pole). The angular velocity is given by

ν = R(3+ R)ω − 2Ä

(1+ R)(2+ R)
,

whereR= 4 is the wave number. Because this solution does not have an analytic solution,
we have used the fourth-order Runge–Kutta finite element solution presented in Section 3
with the grid p= 40 as the reference solution.
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FIG. 12. Case 4. Time history study of the mass error for three different grids.

The final contours for the geopotential height (mass) and velocity field (momentum) for
the grid p= 20 after a 7-day integration are shown in Fig. 13. These contours are drawn
from the view point(λ, θ)= (0, 0). In these figures, the velocity components illustrated
are actually the spherical velocity components(us, vs). These values are obtained by the
inverse mapping of (23).

Figures 14 and 15 show theL2 norms of the mass and momentum with respect to time
for the gridsp= 10, 15, and 20. The errors increase with time at a constant rate; however,
the mass and momentum convergence to second order. This is particularly noticeable by
comparing the gridsp= 10 andp= 20 at the end of the 7-day integration.

6.6. Case 6: Dancing Hi–Lo Waves

This test case comes from [7] and, like case 5, is not an analytic solution to the shal-
low water equations. The initial geopotential height (mass) consists of two large waves
with the low wave situated on the left and the high wave on the right, when viewed from
(λ, θ)= (0, 90). The waves rotate clockwise in a dance-like fashion, at which point at 5
days of integration, the high wave is now on the left and the low is on the right. The final
contours for the geopotential height (mass) and velocity field (momentum) for the grid
p= 30 are shown in Fig. 16. Once again we used the Eulerian Runge–Kutta scheme with
p= 40 as the reference solution.

Figures 17 and 18 show theL2 norms of the mass and momentum with respect to time for
the gridsp= 10, 20, and 30. The errors oscillate with respect to time but they do increase
at a slow rate. However, as in cases 3 and 4, the errors converge to first order.

6.7. Summary of Results

The results obtained for cases 1 and 2 represent very impressive levels of accuracy.
The results were second-order accurate whether the velocity field was constant or changing



FIG. 13. Case 5. The (a) grid, (b) mass, (c) zonal velocity, and (d) meridional velocity on gridp= 20 after
7 days.

FIG. 14. Case 5. Time history study of the mass error for three different grids.
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FIG. 15. Case 5. Time history study of the momentum error for three different grids.

FIG. 16. Case 6. The (a) grid, (b) mass, (c) zonal velocity, and (d) meridional velocity on gridp= 30 after
5 days.

360
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FIG. 17. Case 6. Time history study of the mass error for three different grids.

in time. These test cases confirmed that the Runge–Kutta trajectory calculation scheme
computes accurate departure points.

Cases 3 and 4 tested the accuracy of the full nonlinear shallow water equations on steady-
state problems. For case 3 the mass and momentum errors increased with time while for
case 4 they remained constant with time. The results obtained for these two cases were quite
good, although the convergence rate was around first order.

FIG. 18. Case 6. Time history study of the momentum error for three different grids.
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Cases 5 and 6 tested the stability of the full nonlinear shallow water equations on time-
dependent problems. Although these test cases do not offer analytic solutions, we can still
judge the behavior of the Lagrange–Galerkin algorithm by comparing the solution to some
other algorithm run on a high-resolution grid. For these two test cases, the Eulerian method
described in Section 3 was used. The solutions obtained for both of these test cases were also
of very good quality; case 5 converged to second order while case 6 converged to first order.
Because these test cases do not have analytic solution, the results for these two test cases
should only be interpreted qualitatively. Nonetheless, these results compare well against
results from the literature. In addition, the algorithm conserved mass and total energy up to
about 0.05% for all test cases and for all grids.

Upon considering the behavior of our algorithm on the six test cases it can be concluded
that the algorithm worked correctly and quite accurately; however, improvements can always
be made. The one obvious deficiency of the scheme is that the solution of the mass equation
tended to be far more accurate than that of the momentum equations. Although these two sets
of equations are decoupled, they are still physically linked through the particle trajectories.
Therefore, in order to get accurate mass values, the momentum equations must be obtained
accurately as well. There seems to be a paradox here and part of the explanation for this
behavior may have to do with solving the full shallow water equations in a decoupled
fashion as is done in the Lagrange–Galerkin method. However, this explanation does not
seem sufficient to account for the large discrepancies in accuracy between the mass and
momentum.

Recall that in order to constrain the particles to remain on the sphere a Lagrange multiplier
was used. It can be only conjectured at this point that the Lagrange multiplier is restricting the
convergence rate of the momentum equations. It seems that this extra forcing term adversely
affects the Lagrange–Galerkin method. To test whether this term is indeed responsible for
the slower rate of convergence, a convergence study of the Eulerian Runge–Kutta method,
used as the reference solution in case 5 and 6, was obtained. This method also exhibited the
same trend experienced by the Lagrange–Galerkin method, namely that the mass was an
order of magnitude more accurate than the momentum, and the method converged to first
order.

Although this inherent problem with the Cartesian form of the equations seems insur-
mountable, it is of little concern because the final goal of the current project is to construct
a baroclinic model. These barotropic tests have been applied only to test the majority of
the components that comprise the Lagrange–Galerkin scheme. For a baroclinic model, the
Lagrange multiplier is no longer needed because the fluid particles are not required to re-
main on the surface of the sphere. Having fully three-dimensional degrees of freedom not
only simplifies the Cartesian equations but should ameliorate the slow convergence exhib-
ited by the momentum equations. In fact, going from the current barotropic model to the
baroclinic version will require very few changes: most of the algorithms remain the same
but the basis functions rather than being the area coordinates (triangles) will now be the
volume coordinates (tetrahedra).

6.8. Computational Cost

Figures 19 and 20 summarize the computational cost of using the Lagrange–Galerkin
method for various grid configurationsp. These results were obtained using case 3 but
they are generally representative of the method. These results were obtained on a DEC



LAGRANGE–GALERKIN SHALLOW WATER MODEL 363

FIG. 19. The percentage breakdown of the computational costs incurred by the various operations of the
Lagrange–Galerkin method as a function of grid parameterp for case 3 after 5 days.

Alpha 8400 (EV5 CPU chip) running only one processor at a clock speed of 300 MHz. The
computational cost is divided into three categories: FEM, search, and solve. FEM denotes
the percent involving any operation typically associated with the finite element method.
This includes the construction of the left- and right-hand side element equations as well as

FIG. 20. The total computational time incurred by the Lagrange–Galerkin method as a function of grid
parameterp for case 3 after 5 days.
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the summation of these element contributions which result in the global system of equa-
tions. Search involves the percentage of time required for the departure point calculations,
searching algorithms, and testing for inclusions. Solve represents the percentage of the total
time to invert the mass and momentum matrices. This includes the LU decompositions and
the back substitution of these matrices.

Figure 19 shows that for smallp, the finite element and searching algorithms dominate
the CPU time. However, the cost of these operations drops exponentially with increasingp
as the solve operation costs increase. In fact, for largep the cost of solving the equations
dominates the computational cost completely. The interesting thing about these results is
that if the algorithm must be made more efficient, it will only be accomplished either by
constructing a more efficient matrix solver or by picking a better one. The good news is
that the operations related to the Lagrangian portion of the algorithm, such as the searching
of departure points, do not incur significant costs at all. The costs incurred are those which
plague any implicit method, that is, the inversion of a large sparse matrix.

Many other possibilities for increasing the efficiency of the current algorithm can be
explored: multigrid-type methods have proven to be the most efficient for solving linear
equations, the LU solver can be streamlined by using a node renumbering scheme which
would then allow the storage of the matrix in a tightly banded form, and finally a parallel
implementation of the existing algorithms would remove many of the current bottlenecks.
Currently we are exploring multigrid methods and parallel implementations using Open
MP and MPI.

7. CONCLUSIONS

The results obtained for all six problems showed that the weak Lagrange–Galerkin finite
element method offers a viable method for solving the shallow water equations on the sphere.
Rather than solving the equations in spherical coordinates, the equations are transformed
to Cartesian coordinates, which have two advantages over the equations in spherical space:
the equations no longer contain singularities at the poles, and natural (area) coordinates can
be constructed for the linear triangles. These area coordinates are the basis functions used
to approximate the variables within the elements and are also the interpolation functions
used to determine the value of the variables at the departure and quadrature points. Because
these functions can be written explicitly, they lend themselves to discretizing the equations
simply because the functions, derivatives, and closed form integration rules are all defined.
In addition, a new icosahedral grid has been introduced which offers many more possible
grid configurations over previous icosahedral grids while possessing a much simpler data
structure for searching the departure points. The ideas presented in this paper are easily
generalizable toward the construction of a parallel baroclinic model, which is the topic of
a future paper.

APPENDIX

A.1. Basis Functions

The conservation variables belong to the space

(ϕ, ϕu, ϕv, ϕw) ∈ H1(Ä)
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and their test functions, likewise, are defined as

ψ
(ϕ,ϕu,ϕv,ϕw)
i ∈ H1(Ä);

in other words, they belong to the set of square integrable functions whose first derivatives
are also square integrable. These functions are, in fact, the linear triangular basis functions
and are written as

ψi = ai x + bi y+ ci z

det1i, j,k
(A.1)

and have the exact integration rule∫
Ä

ψα
i ψ

β
j ψ

γ
k dÄ = cross1i, j,k

α! β! γ !

(α + β + γ + 2)!
, (A.2)

where

cross1i, j,k = |(x j − xi )× (xk − xi )| = |Ni, j,k|,
det1i, j,k = xi · Ni, j,k,

and

ai = yj zk − ykzj , bi = xkzj − xj zk, ci = xj yk − xkyj .

The indicesi, j, k= 1, . . . ,3 are cycled in the following order:

k
↙ ↖

i −→ j

.

In addition, these basis functions actually describe the natural or area coordinates on a
triangle.

A.2. Area Coordinates

If the basis functionsψi represented area coordinates on the triangle11,2,3, then these
functions could be written as

ψi (xp) = cross1p, j,k

cross1i, j,k
, (A.3)

wherexp is any point on the triangle11,2,3 andi, j, k are cyclical through the three vertices
of the triangle. Consider that the basis functions given by (A.1) can be written as

ψi (xp) = det1p, j,k

det1i, j,k
(A.4)

and in vector form as

ψi (xp) = xp · [(x j − xp)× (xk − xp)]

xi · [(x j − xi )× (xk − xi )]
,
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which can be written more compactly as

ψi (xp) = xp · Np, j,k

xi · Ni, j,k
. (A.5)

The identity

xi · [x j × xk] = xi · [(x j − xi )× (xk − xi )]

has been used in both the numerator and the denominator. Consider further that ifxp is on
11,2,3, thenNp, j,k andNi, j,k will not necessarily have the same magnitudes (unlessxp= xi )
but they will have the same direction. In other words, sinceNp, j,k is also normal to11,2,3,
we can also define the plane of the triangle11,2,3 as

Np, j,k · (xp − xi ) = 0. (A.6)

Substituting (A.6) into (A.5), we get

ψi (xp) = xi · Np, j,k

xi · Ni, j,k
= |xi ||Np, j,k| cosθxi :Np, j,k

|xi ||Ni, j,k| cosθxi :Ni, j,k

,

whereθx:y denotes the angle between the vectorsx andy. In fact, becauseNp, j,k andNi, j,k

have the same direction,θxi :Np, j,k = θxi :Ni, j,k and we get

ψi (xp) = |Np, j,k|
|Ni, j,k| =

cross1p, j,k

cross1i, j,k
.

Therefore, since cross1i, j,k is equal to twice the area of the triangle1i, j,k, the basis
functions described in (A.1) are, in fact, the area coordinates for a general triangle in 3D
Cartesian space.

A.3. Derivatives

The approximation of any functionϕwithin an element is given by (14) and its derivative
in thes direction as

∂ϕ(e)

∂s
=

3∑
j=1

∂ψ j

∂s
ϕ j , (A.7)

wheres can be eitherx, y, orz. However, on the right-hand side of (13) we see that we need
to know the derivatives ofϕ at the grid points themselves for the momentum equations.
One possible way of obtaining these derivatives is to consider the following: the derivative
within an element can be written as done previously using the function values themselves
at the grid points as given in (A.7). However, if the derivatives at the grid points themselves
were known, then we could also write the derivatives within an element as

∂ϕ(e)

∂s
=

3∑
j=1

ψ j
∂ϕ j

∂s
, (A.8)
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and equating (A.7) and (A.8) in a weak sense, we arrive at∫
Ä

ψiψ j dÄ
∂ϕ j

∂s
=
∫
Ä

ψi
∂ψ j

∂s
ϕ j dÄ, (A.9)

where the element contributions are summed in order to form a global system which then
yields the derivatives at the grid points. This derivative matrix is symmetric positive definite
and can be inverted easily; however, it can also be diagonalized for the sake of efficiency.
This strategy can be used to obtain second-order-accurate derivative approximations and is,
in fact, quite similar to a centered finite difference scheme (see [4]). In addition, it does have
a mathematical basis, as it is the exact same scheme obtained by attempting to approximate
the derivatives by using the chain rule

dϕ = ∂ϕ

∂x
dx+ ∂ϕ

∂y
dy+ ∂ϕ

∂z
dz,

where for each element, we have the contributions to the vertexi from the j andk vertices

ϕ j −ϕi =
∂ϕi

∂x
(xj − xi )+ ∂ϕi

∂y
(yj − yi )+ ∂ϕi

∂z
(zj − zi )

and

ϕk −ϕi =
∂ϕi

∂x
(xk − xi )+ ∂ϕi

∂y
(yk − yi )+ ∂ϕi

∂z
(zk − zi ).

This 2× 3 system can be written in the matrix form

[
(xj − xi ) (yj − yi ) (zj − zi )

(xk − xi ) (yk − yi ) (zk − zi )

]
∂ϕi
∂x

∂ϕi
∂y

∂ϕi
∂z

 =
[
ϕ j −ϕi

ϕk −ϕi

]
,

which is solved for at the element level and an area-weighted average yields the derivatives
at the grid points. In other words, equation (A.9) can be thought of as the derivatives obtained
by an elemental approximation to the chain rule.

A.4. Integration

All of the finite element integrals can be obtained in closed form using (A.2). This can
be easily accomplished for all of the left hand side integrals (those at timen+ 1). However,
for the right-hand side integrals (those at timen) this would require finding the intersection
regions between these Lagrangian elements (those at timen) and the Eulerian elements
comprising the grid (see [3, 5] for details). Therefore, for efficiency we have used a quintic
quadrature rule for all of the right-hand side integrals.
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